
 Roll No: _________
Generalized Codes in Random Order
Modules and Libraries
import pandas as pd
import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
from sklearn.preprocessing import StandardScaler, MinMaxScaler, PolynomialFeatures, LabelEncoder, OneHotEncoder
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_auc_score, roc_curve, log_loss, f1_score, precision_score, recall_score
from scipy.stats import ttest_ind, ttest_rel, ttest_1samp
from scipy.stats import chi2_contingency
from scipy.stats import f
from sklearn.ensemble import RandomForestClassifier

Building Models
model1 = LogisticRegression()
model1.fit(X, y)

X = sm.add_constant(X)
ols_model = sm.OLS(y, X).fit()

model1 = LogisticRegression()
model1.fit(X, y)

model2 = GaussianNB()
model2.fit(X, y)

Summary of model:
print(ols_model.summary())

Quantiles
Q1 = df[''column name''].quantile(0.25)
Q2 = df[''column name''].quantile(0.50)
Q3 = df[''column name'].quantile(0.75)

Declaring Feature and Target Variables
X = df[['x1','x2','x3','x4', 'x5','x6']]
y = df['y']

Correlation Matrix
a= data.corr()
Imputation
num_cols = df.select_dtypes(include=np.number).columns
cat_cols = df.select_dtypes(include='object').columns

num_imputer = SimpleImputer(strategy='mean')
df[num_cols] = num_imputer.fit_transform(df[num_cols])

cat_imputer = SimpleImputer(strategy='most_frequent')
df[cat_cols] = cat_imputer.fit_transform(df[cat_cols])

Reading Files
df = pd.read_csv("filename.csv")
df = pd.read_excel("filename.xlsx")

Check basic statistics
print(df['column name'].describe())
IQR= Q3 - Q1

Printing predicted data
print(predicted_value.iloc[0])

Making prediction:
predicted_value = modelname.predict(new_data)

Cross-tabulation
ct = pd.crosstab(df['Variable1'], df['Variable2'])
print("Cross-tabulation:\n", data)

Scaling
num_cols = df.select_dtypes(include='number').columns

scaler = StandardScaler()
df[num_cols] = scaler.fit_transform(df[num_cols])

#New data for Prediction
new_data = pd.DataFrame({'const':[1],
 'x1':[value],
 'x2':[value],
 'x3':[value],
'x4':[value],
'x5':[value],
 'x6':[value]})
Bounds
lower_bound1 = Q1 - 1.5 * IQR
upper_bound1 = Q3 + 1.5 * IQR
lower_bound2 = Q1 - 3 * IQR
upper_bound2 = Q3 + 3 * IQR

Filter data
DATA= df[(df['column_name'] >= lower_bound) & (df['Salary'] <= upper_bound)]

Dataframe information
print("shape:",df.shape)
print("First 5 rows:\n", df.head())
print("\nData types:\n", df.dtypes)
print(df.shape[0])
print(df.shape[1])
print(df.info())

FeatureImportance for categories
rf = RandomForestClassifier(random_state=42)
rf.fit(X, y)
feat_importances = pd.Series(rf.feature_importances_, index=X.columns)
feat_importances = feat_importances.sort_values(ascending=False)
print("\nFeature Importances:\n", feat_importances)
sns.barplot(x=feat_importances.values, y=feat_importances.index)
plt.title("Feature Importance")
plt.show()

HeatMap
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title("HeatMap")
plt.show()

F-test
var1 = np.var(sample1, ddof=1)
var2 = np.var(sample2, ddof=1)
f_stat = var1 / var2
df1 = len(sample1) - 1
df2 = len(sample2) - 1
p_value = 1 - f.cdf(f_stat, df1, df2)
print("F-statistic:", f_stat)
print("p-value:", p_value)

Chi-Square Test
chi2, p, dof, expected = chi2_contingency(ct)
print("\nChi-Square Statistic:", chi2)
print("p-value:", p)

T-Test
t_ind, p_t_ind = ttest_ind(df['Variable1'], df['Variable2'])
print("T-Test p-values:", p_t_ind,)

Page 1 of 1

