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Generalized Codes in Random Order
Modules and Libraries
import pandas as pd
import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
from sklearn.preprocessing import StandardScaler, MinMaxScaler, PolynomialFeatures, LabelEncoder, OneHotEncoder
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_auc_score, roc_curve, log_loss, f1_score, precision_score, recall_score
from scipy.stats import ttest_ind, ttest_rel, ttest_1samp
from scipy.stats import chi2_contingency
from scipy.stats import f
from sklearn.ensemble import RandomForestClassifier

Building Models
model1 = LogisticRegression()
model1.fit(X, y)

X = sm.add_constant(X)
ols_model = sm.OLS(y, X).fit()

model1 = LogisticRegression()
model1.fit(X, y)

model2 = GaussianNB()
model2.fit(X, y)

Summary of model:
print(ols_model.summary())

Quantiles
Q1 = df[''column name''].quantile(0.25)
Q2 = df[''column name''].quantile(0.50)
Q3 = df[''column name'].quantile(0.75)

Declaring Feature and Target Variables
X = df[['x1','x2','x3','x4', 'x5','x6']]
y = df['y']

Correlation Matrix
a= data.corr()
Imputation
num_cols = df.select_dtypes(include=np.number).columns
cat_cols = df.select_dtypes(include='object').columns

num_imputer = SimpleImputer(strategy='mean')
df[num_cols] = num_imputer.fit_transform(df[num_cols])

cat_imputer = SimpleImputer(strategy='most_frequent')
df[cat_cols] = cat_imputer.fit_transform(df[cat_cols])

Reading Files
df = pd.read_csv("filename.csv")
df = pd.read_excel("filename.xlsx")

Check basic statistics
print(df['column name'].describe())
IQR= Q3 - Q1

Printing predicted data
print(predicted_value.iloc[0])

Making prediction:
predicted_value = modelname.predict(new_data)

Cross-tabulation
ct = pd.crosstab(df['Variable1'], df['Variable2'])
print("Cross-tabulation:\n", data)

Scaling
num_cols = df.select_dtypes(include='number').columns

scaler = StandardScaler()
df[num_cols] = scaler.fit_transform(df[num_cols])

#New data for Prediction
new_data = pd.DataFrame({'const':[1],
                         'x1':[value],
                         'x2':[value],
                         'x3':[value],
'x4':[value],
'x5':[value],
                         'x6':[value]})
Bounds
lower_bound1 = Q1 - 1.5 * IQR
upper_bound1 = Q3 + 1.5 * IQR
lower_bound2 = Q1 - 3 * IQR
upper_bound2 = Q3 + 3 * IQR

Filter data 
DATA= df[(df['column_name'] >= lower_bound) & (df['Salary'] <= upper_bound)]

Dataframe information
print("shape:",df.shape)
print("First 5 rows:\n", df.head())
print("\nData types:\n", df.dtypes)
print(df.shape[0])
print(df.shape[1])
print(df.info())

FeatureImportance for categories
rf = RandomForestClassifier(random_state=42)
rf.fit(X, y)
feat_importances = pd.Series(rf.feature_importances_, index=X.columns)
feat_importances = feat_importances.sort_values(ascending=False)
print("\nFeature Importances:\n", feat_importances)
sns.barplot(x=feat_importances.values, y=feat_importances.index)
plt.title("Feature Importance")
plt.show()

HeatMap
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title("HeatMap")
plt.show()

F-test
var1 = np.var(sample1, ddof=1)
var2 = np.var(sample2, ddof=1)
f_stat = var1 / var2
df1 = len(sample1) - 1
df2 = len(sample2) - 1
p_value = 1 - f.cdf(f_stat, df1, df2)
print("F-statistic:", f_stat)
print("p-value:", p_value)

Chi-Square Test
chi2, p, dof, expected = chi2_contingency(ct)
print("\nChi-Square Statistic:", chi2)
print("p-value:", p)

# T-Test
t_ind, p_t_ind = ttest_ind(df['Variable1'], df['Variable2'])
print("T-Test p-values:", p_t_ind,)
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